Welcome to sequgen’s documentation!¶
API Reference¶
sequgen package¶
Subpackages¶
sequgen.deterministic package¶
Submodules¶
sequgen.deterministic.boxcar module¶
-
sequgen.deterministic.boxcar.
boxcar
(t_predict, location, width, height=1.0)¶ Generate a time series containing boxcar function.
- Parameters
t_predict (Numpy array) – Where you want the model to generate predictions.
location (float) – The start (left point) of the plateau.
height (float) – The height of the plateau.
width (float) – The width of the plateau.
- Returns
Numpy array of shape equal to t_predict containing the signal with the boxcar plateau.
sequgen.deterministic.constant module¶
-
sequgen.deterministic.constant.
constant
(t_predict, value)¶ Generates a time series array with constant value.
Generates a time series array with constant value value for all elements in t_predict.
- Args
- t_predict:
Numpy array containing the points in time where you want to generate a prediction using the ‘constant’ model.
- value:
Value of the dependent variable. Constant for all values of t in t_predict
- Returns
Numpy array with equal shape as that of t_predict, filled with constant value value
sequgen.deterministic.normal_peak module¶
-
sequgen.deterministic.normal_peak.
normal_peak
(t_predict, location, stddev=1.0, unit_integral=None, height=None)¶ Generates a peak whose shape is the gaussian distribution function :param t_predict: Numpy array with points in time where you want the model to generate predictions. :param location: Where you want to place the peak of the curve. :type location: float :param stddev: Shape factor that affects the width of the distribution. :type stddev: float :param height: What the peak height should be. :type height: float :param unit_integral: If true, area under the curve sums to unity :type unit_integral: bool
- Returns
Numpy array with shape equal to t_predict, containing the y values for the normal peak curve.
sequgen.deterministic.sine module¶
-
sequgen.deterministic.sine.
sine
(t_predict, wavelength, phase_shift=0, amplitude=1.0, average=0.0)¶ Generates a sine curve.
- Parameters
t_predict – Numpy array with points in time where you want the model to generate predictions.
phase_shift – How much the phase is shifted in units of t_predict
amplitude – Amplitude of the sine.
wavelength – Wavelength of the sine in units of t_predict.
average – What the average of the sine wave is, i.e. how much the sine wave is offset from y=0.
- Returns
Numpy array with shape equal to t_predict, containing the y values for the sine wave curve.
sequgen.deterministic.triangular_peak module¶
-
sequgen.deterministic.triangular_peak.
triangular_peak
(t_predict, width_base_left, width_base_right, location, height=1.0)¶ Generate a time series containing a triangular peak.
- Parameters
t_predict (Numpy array) – Where you want the model to generate predictions.
width_base_left (float) – The width of the left part of the triangular peak in units of t_predict.
width_base_right (float) – The width of the right part of the triangular peak in units of t_predict.
height (float) – The height of the peak in user-defined units.
location (float) – Where the peak should be placed on the time axis in units of t_predict.
- Returns
Numpy array of shape equal to t_predict containing the curve for a triangular peak in user-defined units.
sequgen.samplers package¶
Submodules¶
sequgen.samplers.sample_uniform_random module¶
-
sequgen.samplers.sample_uniform_random.
sample_uniform_random
(dimension_names=None, lower_bounds=None, upper_bounds=None)¶ Takes a uniform random sample from the parameter space.
- Parameters
dimension_names – Array of names of the dimensions of the parameter space.
lower_bounds – Array of lower bounds of the dimensions of the parameter space.
upper_bounds – Array of upper bounds of the dimensions of the parameter space.
- Returns
Dictionary with keys equal to the dimension names, together representing a uniform random draw from the parameter space.
sequgen.stochastic package¶
Submodules¶
sequgen.stochastic.gaussian module¶
-
sequgen.stochastic.gaussian.
gaussian
(t_predict, stddev=1.0, average=0.0, correlation_length=0.0)¶ Generate an array with an optionally autocorrelated time series of draws from a Normal distribution.
- Parameters
t_predict (Numpy array) – points in time where you want to generate a prediction using this model.
stddev (float) – standard deviation of the Normal distribution that we will be drawing random samples from.
average (float) – mean of the Normal distribution that we will be drawing samples from.
correlation_length (float) – Correlation length in units of t_predict. Default is 0.0, for uncorrelated samples.
- Returns
Numpy array of shape equal to t_predict, where each elem is a random and optionally autocorrelated draw from a Normal distribution.
Submodules¶
sequgen.dimension module¶
sequgen.parameter_space module¶
-
class
sequgen.parameter_space.
ParameterSpace
(dimensions: Iterable[sequgen.dimension.Dimension], sampler: Optional[Callable] = None)¶ Bases:
object
Class representing a parameter space.
-
Dimensions
¶ alias of Iterable[sequgen.dimension.Dimension]
-
format_str
()¶ Format string that can be used to print formatted information about the dimensions of the parameter space
-
sample
()¶ Draw a sample from the parameter space. Defaults to uniform random draw.
-